USE OF MULTILINE CULTIVARS AND CULTIVAR MIXTURES FOR DISEASE MANAGEMENT

C. C. Mundt
Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331-2902; e-mail: mundtc@bcc.orst.edu

Key Words epidemiology, genetic diversity, host-pathogen interactions, pathogen evolution, sustainable agriculture

Abstract The usefulness of mixtures (multiline cultivars and cultivar mixtures) for disease management has been well demonstrated for rusts and powdery mildews of small grain crops. Such mixtures are more useful under some epidemiological conditions than under others, and experimental methodology, especially problems of scale, may be crucial in evaluating the potential efficacy of mixtures on disease. There are now examples of mixtures providing both low and high degrees of disease control for a wide range of pathosystems, including crops with large plants, and pathogens that demonstrate low host specificity, or are splash dispersed, soilborne, or insect vectored. Though most analyses of pathogen evolution in mixtures consider static costs of virulence to be the main mechanism countering selection for pathogen complexity, many other potential mechanisms need to be investigated. Agronomic and marketing considerations must be carefully evaluated when implementing mixture approaches to crop management. Practical difficulties associated with mixtures have often been overestimated, however, and mixtures will likely play an increasingly important role as we develop more sustainable agricultural systems.

INTRODUCTION

One of several crop diversification strategies for disease control (39, 40) is to grow mixtures of plants that differ in their reaction to a pathogen. The philosophy and concepts underlying the use of multiline cultivars (mixtures of lines bred for phenotypic uniformity of agronomic traits) and cultivar mixtures (mixtures of agronomically compatible cultivars with no additional breeding for phenotypic uniformity) were described elegantly in previous Annual Review of Phytopathology chapters (17, 167). Recent minireviews have summarized the epidemiological impacts of host diversity (45) and current research on cereal cultivar and species mixtures in Europe (36). Smithson & Lenne (153) have provided a thorough update of the literature on cultivar mixture effects on disease levels, yield, and yield stability for a range of crops. A website useful for teaching about mixtures in advanced plant pathology classes is now available (23).
A critical point that has previously been emphasized is that of functional diversity, i.e., disease reductions will not be obtained with all mixtures, and randomly chosen mixture components will not necessarily provide adequate disease control. Rather, mixture components need to be relevant, or functional, to the pathogen population in question (112, 147, 167). The effects of mixtures on disease intensity as compared to their component pure stands can range from a disease increase to nearly complete disease control (153). In this review, I discuss potential explanations for this large variation in mixture effects, both within and between pathogens. I then discuss the effects of host diversity on pathogen evolution, and comment on considerations pertinent to implementation of diversity approaches in agricultural production. The term mixture is used to include both multiline cultivars and cultivar mixtures. Though intercropping (mixtures of different crop species) is important (14, 44), especially in traditional agriculture (157), that large and complex literature is not discussed here.

SPECIALIZED, FOLIAR PATHOGENS OF SMALL GRAINS

Most studies regarding the effects of host mixtures on disease have been with specialized, polycyclic, foliar pathogens of small grains, primarily rusts (Puccinia spp.) and powdery mildews (Blumeria [= Erysiphe graminis]), but there have been recent studies with rice (Oryzae sativa) blast, caused by Magnaporthe grisea (72, 103). These extensively grown, self-pollinated cereal crops have a long history of “boom-and-bust” cycles of effective control of disease followed by failure, as pathogens adapt to widely-deployed single race-specific resistance genes (13, 17, 68, 173). Host resistance is often the only economically viable control method for these diseases. Thus, strategies to increase resistance durability against these diseases have been of particular interest.

Several mechanisms have been postulated to explain the reduction in severity of disease caused by polycyclic, foliar pathogens that interact in a gene-for-gene manner with their hosts when mixtures are grown (17, 27, 45, 72, 112, 167). The dilution of inoculum that occurs due to increased distance between plants of the same genotype often appears to be the most important mechanism (20, 27, 167). However, other mechanisms may also be important (27, 72). For example, induced resistance, which is predicted to be important by simulation models (79), accounted for about 30% of the total reduction of yellow rust (caused by Puccinia striiformis) in wheat (Triticum aestivum) cultivar mixtures in the field (22). In another study with wheat yellow rust, cultivars resistant to all inoculated races compensated for susceptible cultivars through increased tiller number, and this compensation sometimes accounted for a very large percentage of the observed reduction in disease severity (37, 38). When each of the cultivars was susceptible to one or more races, however, this same effect was not seen (2). By comparing barley (Hordeum vulgare) cultivar mixtures containing either the same or different race-specific resistance genes, Wolfe et al. (170) estimated that differences in genetic background among cultivars contributed an additional 33% reduction of powdery
mildew beyond that provided by diversity for race-specific resistance. Though much is known about the efficacy of mixtures against foliar small grain diseases, there is still substantial variation in disease control attained in different studies. For example, powdery mildew of small grains is an ideal target for use of host mixtures, owing to a relative abundance of single-gene resistances, a small plant size, shallow dispersal gradient of the pathogen, and a large number of pathogen generations per crop season (45). Even in this case, however, there can be substantial variation in disease control among mixture studies. For example, Smithson & Lenne (153) noted disease reductions relative to pure stands ranging from 4% to 89%. Reasons for such large variation in the efficacy of mixtures on disease are discussed below.

Mixture Composition

For diversity to be functional, there must be an appropriate match between the resistance genes incorporated in a mixture and the avirulence genes present in the target pathogen population. Thus, a matrix of host and pathogen genotypes is usually considered, in an attempt to minimize the percentage of the host population toward which a given race will be virulent. Such information has been used to construct, and alter over time, the resistance genes utilized in multiline cultivars (18, 72). In the United Kingdom, tables have been provided to farmers in which small grain cultivars are placed into different diversification groups, based on their reactions to current virulence combinations of P. striiformis and B. graminis f. sp. hordei (142, 143). A similar process is almost always used in choosing resistance genotypes to include in mixtures, even if not in a formal way. Statistical approaches for choosing mixture components based on field analysis of two-way combinations of cultivars (71, 86) and of the local pathogen population (176) have been proposed. Molecular analyses of pathogen populations (177) and individual avirulence genes (82, 162) may provide further insights into the most appropriate resistance genes to deploy in host mixtures to maximize durability.

Given pathogen specificity, disease severity will decrease with decreasing frequency of a host genotype in mixture, as has been demonstrated numerous times with rusts and powdery mildews of small grains (17, 112, 167), and with rice blast (72, 103). Leonard’s models (83) predict that the apparent infection rate (161) will decline logarithmically with the proportion of a genotype in mixture. This logarithmic relationship has been confirmed in the field for several small grain diseases (20, 33, 73, 83, 87, 88). Both logarithmic (36) and linear (2, 137) relationships have been reported between disease severity and host frequency.

Many experimental studies of mixtures have involved a single pathogen race and two host genotypes, with one host genotype being susceptible and the other completely resistant to that race. Such studies are useful to investigate the dilution effect of mixtures on disease, and are sometimes of practical use to protect an agronomically desirable but susceptible genotype by mixing it with a resistant, but less desirable, genotype (45). Most practical applications, however, involve a more complex matrix of host and pathogen genotypes, wherein each host genotype is susceptible to one or more pathogen races and each race may be virulent to more
than one host genotype. This allows for the use of resistance genes that have been “defeated,” and for mechanisms such as induced resistance and interracial competition to function (112). In these differentially susceptible (45) mixtures, one would expect disease to decline with number of mixture components, if these components react differently to the pathogen genotypes in question. Though studied little, such a decline has been demonstrated in two cases (103, 122). However, these were average effects, and there is sufficient variation among specific mixtures such that a comparison of any two mixtures with differing number of genotypes may not demonstrate the expected result.

Given the logarithmic relationship between infection rate and host frequency described above, one would expect diminishing returns to decreasing frequency of a genotype in mixture or to an increase in the number of genotypes used in a mixture (83, 101). On the other hand, including a large number of genotypes in a mixture could be beneficial in slowing pathogen evolution toward complex virulence (91). In reality, practical considerations often play a large role. Genotypes included in a cultivar mixture usually must be agronomically competitive on their own, and mixing is usually done by farmers themselves or by seedsmen. Thus, the number of genotypes included in a cultivar mixture is usually very limited, often between two and four. The agronomic performance of genotypes included in a multiline cultivar is usually quite similar. In addition, individual lines are usually maintained by some type of certifying organization and provided to seed growers as a bulk population. As a consequence, as many as 8 to 12 lines have been included in some multiline cultivars (4, 18).

The slope of the relationship between a disease parameter (infection rate, % severity, etc.) and host frequency determines the strength of the mixture’s effect on disease and will depend on several factors, including those discussed below.

Epidemic Intensity

Among the more important outcomes of Leonard’s (83) model is that disease reduction due to mixing will increase with increasing generations of pathogen reproduction. For example, in an equal mixture of susceptible and immune plants, the predicted disease level on susceptible plants in the mixture relative to a pure stand of susceptible plants will be 0.5 in the first generation of secondary spread, 0.25 in the second generation, 0.125 in the third generation, etc. The number of pathogen generations that occur in a given epidemic will depend on the level of initial infection, the generation time of the pathogen, and the rate of epidemic development. The usual pattern seen in the field is for disease levels to initially diverge over time, as predicted by Leonard’s (83) equations, and then to converge as the host’s carrying capacity for disease is approached [for example, see (169)]. The reason for the convergence is that the absolute rate of disease increase eventually becomes lower in the pure stands than in the mixture as availability of uninfected host tissue in the more heavily infected pure stands limits epidemic progression (101).
Epidemic speed is also crucial. The more rapidly the host’s carrying capacity for disease is approached, the less effective a mixture will be (101). For example, Alexander et al. (3) did not observe the level of stem rust (caused by *Puccinia graminis*) control they expected in wheat cultivar mixtures. Stem rust epidemics usually begin late in the growing season, the pathogen has a relatively long generation time, and rates of stem rust epidemics are often high. Based on Leonard’s (83) exponential model, a disease reduction of 75% was expected (104) in Alexander et al.’s (3) plots, which consisted of 40% susceptible and 60% resistant plants. When logistic growth was assumed to account for the effects of limited carrying capacity, however, the predicted disease reduction was only 26% (104), a value very close to that observed in the field (3). The impact of carrying capacity may be even more extreme if one accounts for the important effect of latent infections on available infection sites (43). On the other hand, the rate of approach to carrying capacity may be much less significant if disease increase is discontinuous, as opposed to the continuous progression assumed by most analytical models of epidemic progression (45). Thus, divergence and subsequent convergence of disease levels in mixtures versus pure stands is likely to be the typical pattern seen in the field in a qualitative sense, but will differ quantitatively among pathosystems and environments.

As the major effect of mixtures is to reduce the infection efficiency of the pathogen through the dilution effect (see above), large amounts of external inoculum can greatly reduce the efficacy of a mixture for disease control. For example, year-round potato production in one region of Ecuador apparently resulted in large amounts of outside inoculum that masked the effect of potato (*Solanum tuberosum*) cultivar mixtures on late blight, caused by *Phytophthora infestans*. In contrast, mixture effects on late blight were greater at a site more distant from commercial potato production in Ecuador (48), and in more temperate areas of Peru (K.A. Garrett, L.N. Zuniga, E. Roncal, G.A. Forbes, C.C. Mundt & R.J. Nelson, in preparation) and the United States (47). A given level of outside inoculum will constitute a larger proportion of total inoculum in a mild epidemic than in a severe one (45), but the opposite could be true when conditions are favorable for epidemic development, and hence inoculum production, at a regional level.

The influence of epidemic intensity on mixture efficacy will thus depend on the underlying cause(s) of disease increase. If high disease incidence in pure stands is due to a fast approach to carrying capacity or large amounts of outside inoculum (either initially or on a continuing basis), then mixtures may be less effective in severe than in less severe epidemics. If, on the other hand, high disease incidence in pure stands is being driven by the number of pathogen generations, then mixtures may be more effective in severe than in less severe epidemics.

Spatial Scale

Disease control attained through host diversification can be influenced greatly by spatial scale of deployment, and it has been suggested that mixture efficacy
is greater in production-scale situations than in small-scale experimental plots (103, 105, 167). There are several potential reasons for this spatial influence, three of which are discussed below.

EXPERIMENTAL PROCEDURE AND DESIGN Experimental plots are often artificially inoculated, and at much higher concentrations than would be normal in nature, in an attempt to assure disease establishment and to avoid stochastic effects in disease establishment. This practice can reduce the number of generations of pathogen increase that occur before the crop’s carrying capacity for disease is reached, thus reducing the effectiveness of mixtures on disease. A similar situation may arise when infected “spreader plants” are placed within or around experimental plots (9, 36), with the additional disadvantage of ongoing inoculum production from the spreader plants throughout the epidemic.

Nearly all field experiments incorporate some type of “untreated” control, which will have a greater severity of disease and produce greater amounts of inoculum than other plots. In the case of mixtures, untreated controls are usually pure stands of susceptible host genotypes. All types of disease control are affected by interplot interference, including quantitative resistance (134) and fungicides (57). However, mixture experiments are especially vulnerable to interplot interference because the primary effect of mixtures, which is to reduce the pathogen’s infection efficiency through dilution of inoculum, can be overwhelmed by large amounts of outside inoculum, as discussed above. In contrast, many fungicides and quantitative resistance also impact the latent period, lesion expansion, and sporulation, which are not directly affected by high concentrations of outside inoculation. The importance of interplot interference depends on factors such as the ratio of plot size to area between plots, wind conditions, etc. (103, 135, 167). The mixture effect can sometimes be obliterated by interplot interference (103, 167).

NATURE OF DISEASE SPREAD Minogue & Fry (96) and van den Bosch et al. (159, 160) developed mathematical models that describe the movement of disease from a focus as a traveling wave of constant velocity. Later, Ferrandino (34) suggested that epidemic velocity will increase in time and space for wind-dispersed pathogens. If disease spreads as a wave of constant velocity, then the difference in velocity between a pure stand and a mixture will not be affected by the spatial scale of study. If velocity increases in time and space, however, then the difference in velocity between a pure stand and a mixture will become greater as disease expands in time and space (105). Consequently, disease control will be relatively more effective when studied over larger spatial scales. Through consideration of previous theoretical models (159, 160) and field studies with wheat yellow rust, van den Bosch et al. (158) concluded, “In an ideal mixture of susceptible and resistant plants, the radial velocity of focus expansion increases linearly with the logarithm of the proportion of susceptible plants.” This logarithmic relationship was confirmed in a second study with wheat stripe rust (19) and a subsequent study with bean rust, caused by *Uromyces appendiculatus* (5). It is not clear, however, whether velocities
were constant in these studies, as focus expansion was followed only until the radius reached 2 m or less. In contrast, recent studies with wheat stripe rust over greater distances (33 m) showed that epidemic velocity increases in time and space, and that this rate of change is greater for a pure stand than for a mixture (C.C. Mundt & L. Wallace, unpublished).

Many epidemics do not have a distinctly focal nature, and some may begin from numerous, randomly dispersed infections. Spatial scale may be of importance to the epidemiological results of diversity in these cases as well. It was earlier mentioned that mixtures are highly sensitive to the effect of external inoculum. Thus, mixtures with potentially functional diversity may not be as effective as desired in locations with substantial external inoculum. If, on the other hand, deployment of mixtures reduces inoculum densities on a regional basis, there may be a positive feedback, since less external inoculum may be experienced by any given field as mixtures are grown more extensively in the region (113).

OBSERVATION OF MIXTURES AT LARGE SPATIAL SCALE Comparisons of mixture performance at different spatial scales have usually been restricted to casual observations that mixtures provide better disease control at commercial scale than in small experimental plots (103, 167, 169) or that yield loss in mixtures has not been reported under extensive commercial use (18). Large-scale experiments with replicated treatments and appropriate controls are needed, but are prohibitively expensive and/or logistically impossible in most cases. There are, however, two examples in which careful evaluation of the commercial implementation of mixtures suggests that spatial scale may be of importance.

In the early 1980s, barley cultivar mixtures began to be used to control powdery mildew in the then German Democratic Republic, where the incidence of barley fields with severe mildew had reached about 50%. The percentage of fields sown to mixtures gradually increased to 92% (360,000 ha of mixtures) by 1990, while the incidence of severely infected fields declined to 10% and the percentage of fields sprayed with fungicide was reduced about threefold. Similar declines in barley powdery mildew were not observed over the same time period in adjacent countries, where diversification was not practiced (168, 171).

In a second example, in China, mixtures of glutinous rice cultivars highly susceptible to blast were mixed with non-glutinous cultivars that were more resistant, and compatible with a different set of blast races, than were the glutinous cultivars. Four mixtures were deployed in a total of 812 ha of contiguous rice fields spanning five townships in 1998 and in 3342 ha of contiguous rice fields over ten townships in 1999. A replicate of pure-line controls was planted in each township. Thus, mixtures were deployed in large, contiguous areas, but monoculture controls occupied a very small percentage of the total rice area, which minimized the effects of interference caused by high disease densities in pure stands. Mixtures reduced the severity of blast on susceptible glutinous rice cultivars by an average of 94% as compared to pure stands of the same cultivars (178). The practice expanded to 25,000 ha in 2000 and 100,000 ha in 2001 (Y. Zhu, personal communication).
Though results from the above two cases are encouraging, it is also important to keep in mind the “file drawer problem,” i.e., positive results tend to become known, whereas negative results may be placed in a file drawer and never published (29b).

FACTORS DETERMINING MIXTURE IMPACTS ON OTHER PATHOSYSTEMS

Autoinfection/Alloinfection Ratio

Mixtures are unlikely to have significant effects on disease unless there is substantial exchange of inoculum among different host genotypes in the population. Thus, the effectiveness of mixtures for disease control is expected to decline with increasing proportion of autoinfection (8, 51, 120). Autoinfections are those “in which the donor (infector) host individual is the same as the recipient (infected) host individual,” whereas alloinfections are those “in which the donor (or infector) host is a different individual from the recipient (or infected) host individual” (144). The proportion of autoinfection is influenced by both pathogen and host characteristics, as discussed below.

Dispersal

Steep inoculum dispersal gradients can result in high levels of autoinfection, and mathematical models have shown mixture efficacy to decline with increasing steepness of the pathogen’s dispersal gradient (41, 68, 118, 174). There is some field evidence to support this contention. For example, bacterial pathogens are often splash dispersed, a process that can result in very steep dispersal gradients (42, 90). Mixture impacts less than those commonly recorded for rusts and powdery mildews of small grains have been observed for both bacterial blight of beans (Phaseolus vulgaris), caused by Xanthomonas campestris pv. vesicatoria (75), and bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae (1). Such observations do not isolate the effect of dispersal gradient steepness, however. For example, a small number of pathogen generations and substantial lesion expansion (see below) may reduce mixture effectiveness on bacterial blight of rice (1). In disease caused by splash-dispersed fungi, mixtures have also shown relatively low disease control (24, 50, 63, 93, 109, 115, 128, 150), though there are exceptions (60, 122). Comparisons are again confounded, as these splash-dispersed pathogens also tend to demonstrate less host specificity than is commonly seen with rusts and powdery mildews, and some of the results were from crops with plants larger than that of small grains.

Lesion Expansion

Continued expansion of an infection can contribute substantially to autoinfection, and is also a major contributor to total epidemic development (11). Computer simulations suggest that extensive lesion expansion can greatly reduce the efficacy
of mixtures on disease (77, 78). Studies in which environmental conditions and pathogen generation time were held constant showed that disease reductions in wheat mixtures were about twice as large for leaf rust (which has small, determinate lesions) as for wheat yellow rust (which demonstrates substantial lesion expansion) (77). In the field, approximately equal reductions of yellow rust and leaf rust were found in the same wheat cultivar mixtures (103). These mixtures were not designed for protection against leaf rust, however, and diversity may have been more functional against yellow rust than leaf rust, thus biasing the comparison.

Host Geometry

All else constant, autoinfection would be expected to increase with increasing genotype unit area (GUA), i.e., the ground area occupied by an independent, genetically homogeneous unit of host tissue (111). In a random mixture of host genotypes, the genotype unit is a plant, and GUA is the ground area occupied by an individual plant. Similarly, if host genotypes are instead deployed in alternating rows or in different fields, then GUA is the area occupied by a row and field, respectively. GUA does not account for intermingling of adjacent plants or three-dimensional dispersal of inoculum. It can, however, provide a useful approximation of the degree of mixing, or the “grain” of diversity sensu Pielou (138). Computer simulations and field studies showed that mixture efficacy decreases when the degree of aggregation of plant genotypes is changed to alter GUA (111, 117–120, 174). On average, rice mixtures controlled blast somewhat more effectively when plants were mixed within, rather than between, hills (72, 103) or rows (72). Random mixtures of sorghum (Sorghum bicolor) cultivars provided better control of Colletotrichum sublineolum and Exserohilum turcicum than did alternating rows of the same two cultivars (129). Similar results were found with yellow rust of wheat (16). As noted above, row mixtures of different rice cultivars were highly effective at controlling blast in China (178). It was impractical to include a comparison with random mixtures in that study, however.

GUA interacts with other spatial variables to determine disease severity in mixtures. Computer simulations (120) and field studies with rust pathogens (111, 117, 119) showed that GUA had little influence on mixture efficacy if initial inoculum was distributed in a single focus, rather than uniformly over plots. Later theoretical work suggested that the number of host units may be more important than their size, and that mixtures of large genotype units can provide substantial disease control, even when inoculum is distributed uniformly, provided that the total number of host units is sufficiently large (107). This is a difficult concept to test in the field, and results may be affected by shape and spatial pattern of genotype units, as well as by environmental conditions such as wind speed (108).

Overall, there is substantial variation in reported levels of disease control by mixtures for crops with plants larger than small grain cereals (7, 24, 75, 89, 92, 97, 119, 128, 129, 152, 156, 166). This is perhaps not surprising, given the large number of host and pathogen variables among the diseases represented. Nonetheless, there is an indication that mixtures may sometimes be of great value for controlling
diseases of crops with large plants, even for tree species. Computer simulations suggest that mixtures of apple (Malus × domestica) genotypes could reduce the severity of scab (caused by Venturia inaequalis) from 86% to 34% (12). Preliminary field results showed 59% to 95% reductions of scab incidence on the cultivar Golden Delicious when grown in alternating rows with two other cultivars, though mixtures alone were not sufficient to provide commercially acceptable levels of control (89). In some cases, divergent results have been reported for highly similar pathosystems. For example, rust caused by Melampsora spp. was reduced by 50% or greater in mixtures of willow (Salix spp.) clones (92). In contrast, mixtures of poplar (Populus spp.) clones reduced infections of Melampsora larici-populina by 10% or less throughout most of the growing season (97). Conflicting results between the two Melampsora studies may have resulted from differences in effectiveness of the specific resistance genes deployed in each study or by differing experimental designs and procedures. In the case of the willow rust study (92), mixtures consisted of 5–6 clones, minimum plot size was 0.5 ha, and inoculation was natural. For poplar rust, the mixture was of three clones, plot size was only 2.8 × 3 m, and epidemics were initiated with high levels of inoculum (97). Multiline cultivars of coffee (Arabica spp.) are used for protection against coffee rust (caused by Hemileia vastatrix) on 350,000 ha in Colombia (36, 98). This is a proactive program to protect the crop before the disease arrives and, thus, the epidemiological effects cannot be evaluated at this time.

It has been hypothesized that mixture effects on disease will be greater at high planting densities, owing to decreased plant size and, hence, decreased autoinfec-
tion (10). The influence of plant density on disease levels in pure stands must also be accounted for, however. Though it often is expected that disease severity will increase with plant density, field results are highly variable (14, 21). For example, the severity of barley powdery mildew declined with increased plant density, perhaps due to the decreased nutritional status of plants at high density (35). Thus, to isolate the effect of plant density on mixture efficacy for disease control, one needs to include all pure stands and all mixtures at a range of densities, a procedure that is often difficult to accomplish in the field (35). To my knowledge, this has been done in only one study. The effect of wheat cultivar mixtures on yellow rust severity was greatest at an intermediate planting density in two years, despite the fact that rust severity in pure stands increased with planting density in one year and decreased with planting density in the other year of the study (46).

Degree of Host-Pathogen Specificity

There are two situations in which the influence of host-pathogen specificity is relevant to mixtures. The first is for mixtures of host genotypes with partial resistance against pathogens that can also express a high degree of specificity, e.g., rusts and powdery mildews. The second situation is for host-pathogen systems that, as a whole, do not display the high degree of specificity typical of obligate parasites. For example, Rhynchosporium secalis, the causal agent of barley scald, can demonstrate host specificity (93), but this specificity is less stringent than for
biotrophic fungi and there are fewer sources of specific resistance available (122). In either situation, we are usually concerned with quantitative differences among host genotypes in mixture.

One approach to predict the epidemiological effect of such mixtures is to consider resistance to be qualitatively no different from specific resistance, and to simply account for the difference in resistance level between mixture components (45). Other more mechanistic approaches (51, 52, 59) account for differences in resistance components (e.g., infection frequency, latent period, and sporulation) between host components. These models predict that mixtures of partially resistant host genotypes can decrease, increase, or have no effect on disease severity relative to their component pure stands, depending on the relative levels of resistance components between host genotypes. Given that most pathosystems demonstrate some degree of specificity, quantitative adaptation of the pathogen to the differing host genetic backgrounds in mixtures (26, 76, 114, 170) could also lead to disease reductions in mixtures (26, 114).

Models that predict variability in performance among mixtures of host genotypes with partial resistance seem to better match field results. In the field, responses ranging from disease decreases to disease increases have been reported among mixtures of partially resistant genotypes for barley powdery mildew (124), barley scald (93), and Septoria tritici blotch of wheat (29a, 109; C. Cowger & C.C. Mundt, in preparation). In all of these studies, there were mixtures that showed disease increases in one year and disease decreases in another, perhaps owing to interactions of resistance components with environment. Averaged over all mixtures investigated, the majority of studies of mixtures of partially resistant host genotypes have shown relatively low levels of disease control (32, 50, 56, 63, 93, 109, 115, 124) or disease increases (125), though some have demonstrated reductions in disease similar to that expected with race-specific resistance and obligate parasites (60, 122, 150).

Diseases Caused by Viruses

There have been very few studies regarding the effects of mixtures on diseases caused by viruses. The outcome of mixtures on such diseases may be complicated by effects on vector abundance and behavior, as influenced by interactions with the transmission mode of the pathogen (140). Power (141) found that a 1:1 mixture of susceptible:resistant oat (Avena sativa) cultivars reduced the incidence of yellow dwarf to approximately the level observed in the resistant component for all three years of the study. In a different study of yellow dwarf, oat cultivar mixtures reduced disease incidence below the mean of the component pure stands for populations including two moderately resistant cultivars, but not in mixtures containing a highly susceptible and a moderately resistant cultivar (64).

Reductions of yellow dwarf incidence in the oat cultivar mixtures in Power’s (141) study may have been caused by an interaction between vector behavior and virus transmission. Aphids in cultivar mixtures showed higher movement rates and shorter tenure times than aphids in pure stands. This may have reduced transmission
rates for this virus, because an aphid must feed for several hours to inoculate a host plant (141). The transmission dynamics of other pathogens could provide very different results. For example, maize (*Zea mays*) grown in association with beans greatly reduced the density of the leafhopper vector of the corn stunt spiroplasma, but not incidence of the disease. In this case, increased movement and decreased tenure times may have raised the number of transmissions per leafhopper, as the pathogen can be transmitted after very short feeding times by its vector (139).

The incidence of wheat soilborne mosaic was reduced by 33.2 and 39.8%, respectively, in 1:1 and 1:3 mixtures of susceptible:resistant cultivars. Further, the ELISA index of infected plants was 27.1% and 33.7% less in the 1:1 and 1:3 mixtures, respectively. Under field conditions, the resistant cultivar did not produce viruliferous zoospores of the soilborne vector, *Polymyxa graminis* (54). Thus, presence of the resistant cultivar in the mixture may have reduced virus transmission between susceptible plants in the mixture.

Soilborne Pathogens

The impact of mixtures on soilborne pathogens is likely to be determined by the extent to which secondary cycles of the pathogen occur, degree of host specificity, and spatial pattern of the pathogen in soil. As noted above, mixtures had a significant effect on wheat soilborne mosaic, a viral disease with a soilborne, protist vector (54). Mixtures of a resistant and a susceptible oat isolate decreased the disease index of Victoria blight and spore production of *Helminthosporium victoriae* in both field and greenhouse soil infested in foci (6). Crown and root rot of sugar beet (*Beta vulgaris*) caused by *Rhizoctonia solani* was reduced by mixing a susceptible cultivar with a highly resistant, but lower-yielding cultivar. Mixtures containing between 1/6 to 1/3 of the resistant cultivar provided yields superior to that of the susceptible cultivar in the presence of disease and yielded comparably to the susceptible cultivar in the absence of disease. This practice is now being rapidly adopted by sugar beet growers in Michigan (53; J.M. Halloin, personal communication). There are three published reports from different localities involving eyespot of wheat, caused by *Pseudocercosporella herpotrichoides*. All three studies included one or more mixtures of a cultivar possessing a major gene for resistance to *P. herpotrichoides* mixed with a susceptible cultivar. Results ranged from a statistically significant 13% reduction of eyespot severity (110) to smaller effects that were nonsignificant (109, 110, 146). Cultivar mixtures did not significantly reduce severity of eyespot in barley (50).

Interactions between plant genotypes in mixtures can sometimes provide yield benefits in the presence of soilborne pathogens, even when disease levels are not affected. The yield of mixtures of resistant and susceptible soybean (*Glycine max*) isolines at four of six locations was equal to that of the resistant pure stands in the presence of *Phytophthora sojae* because resistant isolines compensated for yield reductions as high as 35% experienced by susceptible isolines in mixture; substantial, though not complete, compensation occurred at the other two locations (165). Large yield increases over component means have often been recorded in
on-farm trials for wheat cultivar mixtures grown in the presence of *Cephalosporium gramineum*, despite the lack of an effect of mixtures on severity of Cephalosporium stripe disease (106, 116). This result was likely not due to simple compensation, however, as mixtures with the largest increases in yield were sometimes those consisting of cultivars with similar levels of resistance to Cephalosporium stripe. Averaged over three seasons, one wheat cultivar mixture yielded 9.1% greater than the mean of its component pure stands when inoculated with *P. herpotrichoides*, despite no effect on eyespot severity; the mean yield increase of this mixture in noninoculated plots was only 2.9% (110).

PATHOGEN EVOLUTION IN MIXTURES

As discussed above, race-specific resistance genes can continue to provide large epidemiological repercussions when deployed in mixtures, even after the matching virulence has evolved in the pathogen population. Will diversification also slow evolution to matching virulence of a given resistance gene? There are two issues to be considered. The first and simpler one is whether a given resistance gene will be more durable when deployed in a mixture than in a monoculture. A resistance gene deployed in a mixture will have less exposure to the pathogen population than if the same gene were deployed in monoculture of the same total crop area. This would be expected to reduce selection pressure and increase durability of that gene; limited field observations seem to support this view (103).

A more difficult question is whether a given number of resistance genes will be more durable if deployed in a mixture as compared to the same number of genes deployed sequentially in monoculture or combined into a single host genotype. Not surprisingly, mixtures support more diverse pathogen populations than do pure stands (18, 30, 72, 100), and the degree of diversity maintained within mixtures appears to be positively related to the degree of disease control provided (30). In the longer term, the question is whether mixtures will select for increased frequency of complex races, i.e., those with virulence corresponding to more than one resistance gene in the mixture. Unfortunately, this question is extremely difficult to test experimentally, and may require large areas and/or large amounts of time to address adequately.

In small-scale experimental plots, the relative frequency of complex *B. graminis* genotypes was greater in barley cultivar mixtures than in pure stand controls (26, 55, 121). Huang et al. (55) found that selection for complexity was less intense in row mixtures than in random mixtures of barley cultivars, supporting mathematical models (8, 51, 132) that predict less intense selection for complexity as autoinfection increases. At a larger spatial scale, the fungus increased in complexity in the former German Democratic Republic, where barley mixtures were being grown on as much as 360,000 ha. However, the same trend occurred in the former Czechoslovakia, where mixtures were not grown (171). Thus, it has been suggested that this increased complexity was an effect of migration, rather than selection by the mixtures (172).
It is more difficult to determine the selective influence of mixtures for clonal pathogens because virulence genes will not be randomly associated with other genes that influence pathogen fitness. In artificially inoculated plots, the proportion of complex races present in a mixture depended on the environment, host genotypes included in the mixture, and the genetic background of the complex race (30). In a very carefully designed greenhouse experiment, Kolmer (74) attempted to dissociate genetic background from virulence by first passing a population of *Puccinia graminis* through the sexual stage. Populations of the pathogen were then cycled on three different wheat multilines over 12 generations. He found strong selection for pathogen genotypes with virulence corresponding to three of the five resistance genes present in the multiline populations, but genotypes with four or five corresponding virulences represented a small minority and occurred at frequencies lower than predicted by a mathematical model. Given that the same virulences were selected on the susceptible, recurrent parent, this selection may have been due more to fitness effects associated with specific combinations of virulences than to any selective effect of the multilines. Thus, even in a well-designed experiment, it can be very difficult to make generalizations concerning the effects of mixtures on evolution of clonal pathogens.

Chin & Wolfe (26) have demonstrated that the manner in which genotype frequency data are expressed can strongly influence interpretation of evolutionary trends in mixtures. They found that the greater relative frequency of complex *B. graminis* genotypes in barley cultivar mixtures was attributable to the mixtures being highly effective in reducing the absolute frequency (number of colonies per tiller) of simple genotypes. In fact, the absolute frequency of the most complex genotype was less in a mixture of three barley cultivars than in the component pure stands, perhaps owing to the selective influence of different host genetic backgrounds in the mixtures (see below). After several years of extensive commercial use of barley cultivar mixtures in eastern Germany, there was an increase in the relative, but not absolute, frequency of *B. graminis* genotypes combining virulence to two of the three resistance genes most commonly used in the mixtures. Combining disease control and race frequency data in the wheat yellow rust study described above (30) also indicates a reduced absolute frequency of complex races in mixture as compared to pure stand, though data from only one susceptible pure stand was included in that study. It is thus possible that little loss of disease control would occur, despite an increase in relative frequency of complex pathogen genotypes in mixtures. For example, inoculation of an oat multiline with a race of *Puccinia coronata* virulent against all six resistance genes did not diminish the ability of the mixture to reduce disease severity (29 cited in 17). These results are all consistent with observations of natural ecosystems, in which complex races are the most frequent but do not displace all other genotypes (31, 148) and are not sufficiently fit to cause high levels of disease (148, 149). Selection for increased fitness of complex races could occur over multiple seasons in agricultural systems, if a mixture with a small number of host components were to be grown continuously (26).

The difficulty of studying pathogen evolution experimentally has encouraged the use of mathematical models. Earlier modeling studies of pathogen evolution
in mixtures have been summarized (67, 84, 91), and there have been additional contributions subsequently (51, 52, 80, 81, 151, 154, 175). Most of these models incorporate the status quo view on this topic, which assumes that fitness costs associated with virulence (more properly in most cases, a lack of avirulence) is the only mechanism to counter selection for increased virulence complexity in the pathogen. The advantage to a complex race of being able to attack multiple host genotypes in a mixture is hypothesized to be countered by a reduction in fitness associated with lack of avirulence genes that correspond to the matching resistance genes. In general, these models suggest that it will be difficult to prevent complex races from eventually dominating the pathogen population, though the process may be sufficiently slow such that the pathogen population can be managed.

Though models of pathogen evolution usually require a cost of virulence, evidence supporting such costs is very weak. Parlevliet (133) provided a thorough review of the literature regarding the cost-of-virulence concept, and found no association of virulence with fitness as a general phenomenon. More recent molecular analyses indicate that some avirulence genes can contribute to fitness pleiotropically, and that inactivation of such avirulence genes can lead to reduced pathogen fitness. This does not appear to be the general case, however, and “a majority of the known fungal avirulence genes have no obvious fitness function.” Further, redundancy of avirulence genes in plant pathogens may allow pathogens to avoid resistance gene recognition, while retaining fitness functions associated with avirulence (82).

Parlevliet (133) explained the general lack of association between virulence and fitness in a two-step model consisting of mutation to virulence, which is often associated with a fitness reduction initially, followed by selection for fitness modifiers that eventually ameliorate the initial fitness cost. He supported this model with empirical observations from several pathosystems. Though largely ignored in plant pathology, such fitness modifiers play a critical role in evolutionary processes of other organisms. For example, selection for modifying genes can eliminate fitness reductions initially associated with antibiotic resistance in bacteria (28, 85, 99). Thus, selection for virulence in mixtures is likely to be more complex than is accounted for by static fitness costs, and selection for fitness modifiers is likely to be slower than selection for the virulence genes themselves (169). Further, it may be important to estimate initial fitness costs associated with virulence before there has been substantial selection for fitness modifiers.

Equally important to evaluating potential virulence costs is a need to examine other mechanisms (81, 84, 102, 112) that may counter selection towards increased pathogen complexity in mixtures. A few examples of such mechanisms are discussed below.

Alternative Mechanisms

Quantitative adaptation of pathogens to differing host genetic backgrounds present in crop mixtures could play a very important role in suppressing selection for complex races. For example, *B. graminis* isolates able to attack two different major
resistance genes were collected from pure stands of barley and barley cultivar mixtures containing these two resistances. Bulk populations of these isolates were then tested for infection efficiency on these same two host genotypes in the greenhouse. Populations derived from pure stands of the cultivar Hassan had a higher infection efficiency on Hassan than on the cultivar Wing, and vice versa. Populations derived from a mixture containing both Hassan and Wing had reduced infection efficiency on both cultivars, suggesting that a form of disruptive selection prevented this complex race from obtaining high fitness on both host components in the mixture (26). A similar result has recently been reported for *Blumeria graminis* f. sp. *tritici* (163) and *Mycosphaerella graminicola* (114) on wheat, though subsequent research did not demonstrate a consistent effect for *M. graminicola* (29a). Modeling studies suggest that differential adaptation to mixture components can greatly slow selection for a complex pathotype (81), and that the rate of selection for complexity is slowed by increased genetic diversity for fitness of the pathogen and by increasing rates of autoinfection (76).

It is usually assumed that the relative fitness of competing pathogen genotypes will be constant with regard to both population density and genotype frequency. However, differences in fitness components and effects of competition on these components can result in relative fitness being dependent on density and/or frequency (126, 127). In fact, modeling results indicate that relative fitness of competing pathogen genotypes will rarely be constant in nature (127). As pathogen density and genotype frequency change during the course of an epidemic, relative fitness may change over time, perhaps even reversing the fitness ranking of simple versus complex genotypes. Though experimental data are few, examples exist of both density-dependent (62, 65, 126, 130) and frequency-dependent (65, 126) selection for competing genotypes of plant pathogens. Simulation modeling suggests that density-dependent effects can slow selection for complex races in host mixtures, though density-dependence did not prevent the complex genotype from eventually dominating the simulated pathogen populations (80, 81).

Plant pathogen populations commonly undergo severe genetic bottlenecks, e.g., during overseasoning, and pathogen genotypes at low frequency may easily be lost owing to random drift during such times. Kiyosawa (67) suggested that genetic drift during overseasoning could be critically important to the rate of “breakdown” of resistant cultivars, and modeling results suggest that fungicide-resistant mutants can be lost through such random effects (95). Pathogen genotypes combining complex virulence with high fitness are likely to be in very low proportion initially. Thus, selection of highly fit, complex genotypes in mixtures could be greatly slowed through stochastic effects when population size is small. To my knowledge, all models of pathogen evolution in mixtures are deterministic, and thus do not account for the effect of genetic bottlenecks.

Selection for complex pathogen genotypes will be reduced if a large proportion of the initial inoculum consists of migrants from another area where mixtures are not grown. For example, immigration has a very large impact on the population genetics of *B. graminis* on small grains in Europe (171), and may have contributed
CULTIVAR MIXTURES

397
to the lack of strong selection for complex genotypes in barley cultivar mixtures grown in the former German Democratic Republic (172). The importance of migration will decline if similar mixtures are widely used, as a larger proportion of immigrants will have been exposed to the same selective pressure.

Selection in heterogeneous environments, a result of genotype × environment interaction, may slow selection for complex pathogen genotypes in mixtures. For example, race frequencies of *P. striiformis* were monitored in five three-way wheat cultivar mixtures planted at two locations and in two years (30). Complex races able to attack two of three mixture components often dominated in one location or year but not another. In no case did a complex race dominate in both years and locations in which the study was conducted. For powdery mildew of barley, on the other hand, the selective effect of cultivar mixtures on pathogen complexity showed substantial consistency between seasons (26, 55), perhaps because sexual reproduction distributed virulence genes randomly among multiple genetic backgrounds of the pathogen.

There will unquestionably be some selection toward increased relative frequency of complex races in host mixtures. After several decades of study, however, we still do not know the rate at which such selection will occur or to what degree, if any, it would decrease the disease control provided by mixtures. Answers should emerge from increased field experimentation and increased commercial use of mixtures. From a mechanistic standpoint, we need to abandon the old view of static costs of virulence being the primary mechanism to counter selection for increased pathogen complexity in mixtures. Other processes such as selection for fitness modifiers, disruptive selection, random drift, density- and/or frequency-dependent selection, genotype × environment interaction, or some combination of these factors will likely need to be accounted for.

Pathogen evolution can be managed to some extent by ensuring that no single mixture is grown exclusively in either time or space (169). Though such management can be done purposefully [for example, see (18)], it will occur as a matter of course in many cases. For example, new genotypes can easily be added to cultivar mixtures as agronomically superior cultivars are released. In Oregon, wheat growers purchase or mix seed of new wheat mixtures containing recently released cultivars; some growers simply blend a new cultivar into the mixture that they had previously been growing (103; C.C. Mundt, unpublished). Spatial diversity of mixtures is also likely to occur naturally, as different mixtures will perform better in different localities within a region, owing to differences in soil, climate, and management practices. In the former German Democratic Republic, eight barley cultivar mixtures incorporating 19 cultivars were utilized (171). In Washington state, 18% of the common soft white winter wheat area was sown to cultivar mixtures in autumn 2000 (total of 106,000 ha of mixtures), and this included at least 16 different mixtures (164). Even for perennial plantings, such as orchards, it may be possible to utilize different mixtures in time and space, since new plantings are continually being established over time, sometimes even within the same orchard.
IMPLEMENTATION

Mixtures are being used increasingly in commercial production around the world (36). Many of the initial studies and applications of mixtures in “modern” agriculture were multiline cultivars (112). Multiline cultivars are still being used today, and may be especially useful when a strongly favored agronomic parent is available or when crop uniformity is deemed crucial [for example, see (72, 98)]. In general, however, there has been a move in favor of cultivar mixtures over multilines. Cultivar mixtures are advantageous because they require no additional breeding effort and allow incorporation of agronomically superior cultivars as they become available. Further, increased genetic diversity among components of a cultivar mixture may provide additional control against the target disease, as well as some protection from nontarget diseases and abiotic stresses (169, 170). Though much of the work on mixtures has involved self-pollinated crops, recent work with pearl millet (*Pennisetum glaucum*) showed rust reductions and yield increases for mixtures of inbred lines, and especially for random-mated populations and mixtures of two- and three-way crosses (156). Wilson et al. (166) recently demonstrated a “dynamic multiline” approach in pearl millet that combines the advantages of both multilines and gene pyramids. Selection over four cycles of open pollination resulted in hybrid populations that reduced rust severity by 12–13% per cycle, and increased digestible biomass yield by 4.1% per generation. Such an approach also allows for selection of plant genotypes that have coevolved in a mixed population, which may contribute to improved performance of mixtures. In fact, arguments have been made in favor of selecting plant genotypes for their ability to perform well in mixtures for both self- and cross-pollinated species (39). Further research is needed to determine the costs and benefits in taking such an approach.

A useful mixture must provide yield benefits as well as disease control. Yield increases of 1–5% are often provided by cultivar mixtures in the absence of substantial disease, with larger increases when disease is of significance [for examples, see (38, 153, 169)]. Yield benefits can sometimes be substantially greater in large than in small plots (49, 169; C.C. Mundt, unpublished), often for unknown reasons beyond that of disease control attained in plots of different size (49; C.C. Mundt, unpublished). Interactions between plant genotypes in mixture cause the relationship between disease level and yield of a mixture to be highly complex and unpredictable (36). In contrast, yield stability seems to be strongly and more consistently associated with mixtures (15, 66, 106, 136, 153, 167, among others). Yield stability is often considered crucial in subsistence agriculture, and appropriately so. However, yield stability has also become crucial in industrialized agriculture, owing to the precarious economic situation facing commercial agriculture today. In fact, large, commercial growers in the United States are sometimes interested in mixtures more for their effect on yield stability than for yield level (66; C.C. Mundt, unpublished). Yield stability of mixtures could be due to disease control or compensation between host genotypes for damage caused by abiotic stresses such as cold injury (15, 36, 167), or other unknown genotype × environment interactions.
Regardless of mechanism, it is usually impossible to predict at the time of planting which host genotype will yield best in a particular season. Given that some yield advantage is expected to growing mixtures, on average, a farmer will increase the chances of attaining high yield by sowing a mixture of high-performing cultivars (167, 169). It seems clear that a competitive mixture must usually consist of genotypes with high yield potential in pure stand (103, 136, 169).

Though more effort is required to produce seed of mixtures than is the case for single genotypes, there are several ways to provide mixed seed to farmers (103, 167). Multiline cultivars, which usually consist of several genotypes, are generally produced by a certifying agency, with lines being produced separately, bulked, and then provided to seed producers for increase and sale [see (4, 18)]. Seed of cultivar mixtures, which usually consist of a smaller number of genotypes, is usually mixed by commercial seedsmen or by growers themselves (94, 103). In Oregon, mixtures are commonly sold, even by the largest companies (103), and mixtures provide an attractive market niche for some seed producers (C.C. Mundt, unpublished). Some apprehension has been expressed regarding shifts of mixture components over time for small grain cultivar mixtures in some environments (167). In other localities, wheat cultivar mixtures are carried over for 3 to 4 years with few problems regarding component shifts (103).

Though mixture components must be compatible in terms of agronomic and quality characteristics, the difficulty of attaining such compatibility has often been overemphasized (36, 103, 167). For example, 13% and 18% of the Oregon (131) and Washington (164) winter wheat areas are currently being grown as cultivar mixtures, with no apparent agronomic or marketing difficulties. Further, there often is as much difference among plants or tillers of the same cultivar grown in the same field as there is between different cultivars in a mixture. Considerable height differences can often be accommodated by harvest machinery; occasionally, height differences even facilitate harvest (103). Height differences between cultivars that are too large, however, may necessitate processing more straw or stalk material than is desired (15, 103) and may require excessive attention by the operator to ensure that all of the crop is harvested. The importance of variation in crop maturity date will depend on the crop species and geographical location in question. In the Pacific Northwest region, where conditions become increasingly hot and dry as the wheat crop matures, large maturity differences at anthesis translate into very small differences at harvest. Thus, there is little problem in mixing wheat cultivars with different maturity (103), except at the highest elevations where cooler temperatures sometimes extend maturity differences. Compatibility for maturity date of field crop cultivars may be more critical in areas where summer rainfall is common, however [see (15)], and may be even more critical for some vegetable and fruit crops.

Differences in quality and marketing of mixtures will depend on the crop in question. For many field crops, the harvested product is often not segregated by cultivar upon sale, and environment can often have a greater influence on quality characteristics than does cultivar (103). Given that cultivar mixtures produce wheat
flour (36, 56, 103), wheat grain (145), barley malt (123, 155), barley grain (58),
and rice grain (25) with quality equal to or better than the mean of its component
cultivars in pure stand, there should usually be no difficulty involved with sale
of mixtures containing genotypes that produce acceptable quality when grown
alone. Indeed, mixtures can sometimes be used to improve the quality of a product
(36, 56, 145). For crops that are sold to the consumer by cultivar (e.g., apples),
it would be necessary to harvest the cultivars separately, sort by cultivar after
harvest, or to develop multiline cultivars consisting of components with highly
similar quality characteristics.

It is now uncommon for plant breeders to produce true pure-line cultivars of
many field crops, and within-cultivar diversity may improve yield stability and re-
duce vulnerability to disease. For example, the most successful groundnut (Arachis
hypogea) cultivars grown in the United States (e.g., ‘Florigiant’ and ‘Florerunner’)
are mixtures developed by bulking phenotypically similar lines in the F3 to F5 gen-
erations (70). These cultivars have long dominated U.S. groundnut production, and
have demonstrated a high level of stability over environments for yield and other
characteristics (69). Interestingly, the soft white winter wheat cultivar Stephens
was developed in a similar manner, but through the accidental bulking of lines
early in the breeding process. Released in 1977, Stephens has been one of the most
successful wheat cultivars in the United States, showing tremendous productivity
and adaptability, and still comprised half of the Oregon winter wheat area in 2001
(131). Though largely anecdotal, such observations suggest that retaining diversity
within cultivars may be highly beneficial in traditional breeding programs, and that
diversity should be introduced into cultivars produced via biotechnology, for exam-
ple, by transforming resistance genes into multiple host genetic backgrounds and
by bulking phenotypically similar progeny resulting from a doubled haploid cross.

CONCLUSIONS

It is now 50 years since the pioneering call for use of multiline crop cultivars
by Jensen (61). The usefulness of mixtures for control of powdery mildews and
rusts of small grains, which account for the majority of mixture research, has been
demonstrated repeatedly through experimental studies. There have been some
major successes in using mixtures to control such diseases at a commercial scale.
However, mixtures will be more useful under some epidemiological conditions
than under others, and experimental methodology, especially scale issues, may be
crucial in evaluating the potential usefulness of mixtures.

A data base is now accumulating to evaluate the effect of mixtures for other
types of pathosystems. In the rare cases when all other variables can be held
constant experimentally, and in mathematical models, it is possible to demonstrate
that mixtures are, on average, less effective under some conditions, e.g., for crops
with large plants. All else is rarely equal in the real world, however, and there are
examples of mixtures providing both low and high degrees of disease control for
almost any type of pathosystem imaginable, including crops with large plants, and pathogens that demonstrate low host specificity, or are splash dispersed, soilborne, or insect vectored.

Despite the absence of strong evidence for rapid loss of mixture effectiveness owing to selection of complex pathogen genotypes, our knowledge in this area is inadequate. Empirical studies to address this issue are difficult to conduct, and mathematical models have taken a simplistic view by focusing mostly on static costs of virulence as the main mechanism countering selection for pathogen complexity in mixtures. Many other mechanisms that may potentially maintain pathogen diversity in mixtures need to be investigated. Studies of pathogen evolution need to consider both relative and absolute frequencies of pathogen genotypes, and mixtures should be managed to avoid strong selection for complex pathogen genotypes that are highly fit.

Theory and models have been useful in evaluating epidemic development and pathogen evolution in mixtures, especially when combined with results of empirical studies. However, current models do not describe events in the field accurately, and results from well-designed field experiments continue to limit our understanding of the effect of mixtures on disease development. Owing to host and pathogen complexity, field studies of mixtures are more difficult to conduct and more prone to error and bias than are many other types of field studies.

In the past, many agricultural researchers have assumed that mixtures will not provide adequate disease control, are impractical, or would prove to be unacceptable to farmers. These arguments are clearly invalid as generalities, and there are now many examples of mixtures contributing substantially to disease control, yield increases, and yield stability in commercial agriculture. On the other hand, the concept of functional diversity instructs that not all mixtures will provide benefits, and that use of mixtures will not be feasible in all cases. Multilines, cultivar mixtures, and other methods of genetic diversification should be considered as important tools for management of all crops, but must be appropriately evaluated within the context of the needs of the local agricultural industry and through direct interaction with farmers. Mixtures will not be the disease control tactic of choice in all cases. Given the need for a more sustainable agriculture based on models of natural ecosystems, however, host mixtures will likely play a much larger role in the next 50 years than they have in the past half century.

The Annual Review of Phytopathology is online at http://phyto.annualreviews.org

LITERATURE CITED

3. Alexander HM, Roelfs AP, Cobbs G.
1986. Effects of disease and plant competition on yield in monocultures and mixtures of two wheat cultivars. Plant Pathol. 35:457–65
18. Browning JA, Frey KJ. 1981. The multiline concept in theory and practice. See Ref. 60a, pp. 37–46
Bumbong Lima, Province Wellesley, Malaysia, pp. 203–16
47. Garrett KA, Mundt CC. 2000. Host diversity can reduce potato late blight severity

68. Kiyosawa S, Shiyomi M. 1972. A theoretical evaluation of the effect of mixing resistant variety with susceptible variety
105. Mundt CC. 2001. Varietal diversification and disease control. See Ref. 94a, pp. 135–42
109. Mundt CC, Brophy LS, Schmitt ME.
Choosing crop cultivars and mixtures under high versus low disease pressure: a case study with wheat. *Crop Prot.* 14:509–15

142. Priestly RH. 1981. Choice and deployment of resistant cultivars for cereal rust control. See Ref. 60a, pp. 65–72

146. Saur L, Mille B. 1997. Disease progress of *Pseudocercosporella herpotrichoides* in mixed stands of winter wheat cultivars. *Agronomie* 17:113–18

151. Shaw MW, Ostergaard H. 1998. Further comments on models of pathogen coevolution in cultivar mixtures and the
definition of pathogenic fitness. *Phytopathology* 88:492–93

170. Wolfe MS, Barrett JA, Jenkins JEE. 1981. The use of cultivar mixtures for disease control. See Ref. 60a, pp. 73–80

CONTENTS

FRONTISPICE xi

ONE FOOT IN THE FURROW: IMPLICATIONS TO ONE’S CAREER IN PLANT PATHOLOGY, D. E. Mathre 1

EVOLUTIONARY ECOLOGY OF PLANT DISEASES IN NATURAL ECOSYSTEMS, Gregory S. Gilbert 13

MAKING AN ALLY FROM AN ENEMY: PLANT ViroLOGY AND THE NEW AGRICULTURE, Gregory P. Pogue, John A. Lindbo, Stephen J. Garger, and Wayne P. Fitzmaurice 45

STRIPED RUST OF WHEAT AND BARLEY IN NORTH AMERICA: A RETROSPECTIVE HISTORICAL REVIEW, Roland F. Line 75

VIRAL SEQUENCES INTEGRATED INTO PLANT GENOMES, Glyn Harper, Roger Hull, Ben Lockhart, and Neil Olszewski 119

MOLECULAR BASIS OF RECOGNITION BETWEEN PHYTOPHTHORA PATHOGENS AND THEIR HOSTS, Brett M. Tyler 137

GENE EXPRESSION IN NEMATODE FEEDING SITES, Godelieve Gheysen and Carmen Fenoll 191

PHYTOCHEMICAL BASED STRATEGIES FOR NEMATODE CONTROL, David J. Chitwood 221

HOST-SELECTIVE TOXINS AND AVIRULENCE DETERMINANTS: WHAT’S IN A NAME? Thomas J. Wolpert, Larry D. Dunkle, and Lynda M. Ciuffetti 251

TOBACCO MOSAIC VIRUS ASSEMBLY AND DISASSEMBLY: DETERMINANTS IN PATHOGENICITY AND RESISTANCE, James N. Culver 287

MICROBIAL POPULATIONS RESPONSIBLE FOR SPECIFIC SOIL SUFFIXNESS TO PLANT PATHOGENS, David M. Weller, Jos M. Raaijmakers, Brian B. McSpadden Gardener, and Linda S. Thomashow 309
CONTENTS

PATHOGEN POPULATION GENETICS, EVOLUTIONARY POTENTIAL,
AND DURABLE RESISTANCE, Bruce A. McDonald and Celeste Linde 349

USE OF MULTILINE CULTIVARS AND CULTIVAR MIXTURES FOR DISEASE
MANAGEMENT, C. C. Mundt 381

BIOLOGICAL CONTROL OF POSTHARVEST DISEASES OF FRUITS,
Wojciech J. Janisiewicz and Lise Korsten 411

ANTIBIOTIC USE IN PLANT AGRICULTURE, Patricia S. McManus,
Virginia O. Stockwell, George W. Sundin, and Alan L. Jones 443

RISK ASSESSMENT OF VIRUS-RESISTANT TRANSGENIC PLANTS, Mark Tepfer 467

INDEXES
Subject Index 493
Cumulative Index of Contributing Authors, Volumes 31–40 521
Cumulative Index of Chapter Titles, Volumes 31–40 525

ERRATA
An online log of corrections to Annual Review of Phytopathology chapters
(if any, 1997 to the present) may be found at http://phyto.annualreviews.org/