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Climate is a major driver of ecosystem dynamics. In recent years there has been considerable interest in
future climate change and potential impacts on ecosystems and management options. In this paper, we
analyzed minimum monthly temperature (T min) for ten rural locations in the western U.S. sagebrush
steppe. Oregon and Nevada each had five locations, and the period of record ranged from 69 to 125 years.
We used structural time series analysis to evaluate trends over time at each location. We also used box
plots to compare variation within months at each location. We concluded: 1) T min variation over years is
much higher during the winter than during other seasons, 2) there is evidence of decadal trends in both
directions (hotter and cooler) for most, but not all sites, and 3) sites exhibited individualistic patterns
rather than following a general regional pattern. The analysis shows that sites in relatively close prox-
imity can exhibit different temperature patterns over time. We suggest that ecologists and land man-
agers make use of any available weather data from local weather stations when planning for the future or

interpreting past changes in plant and animal populations, rather than relying on regional averages.

Published by Elsevier Ltd.

1. Introduction

The western U.S. sagebrush steppe is a region that has experi-
enced large historical climatic shifts (Nowak et al., 1994). Because of
the aridity of the region, relatively small shifts in climate can in-
fluence ecosystem dynamics. Some projections suggest that tem-
perature increases in the future could be substantial (about
2.0—6.0 °C), although predictions for precipitation are less clear
(Mote et al.,, 2013). Precipitation is generally considered more
difficult to predict than is temperature (Webb and Stokes, 2012). Of
the various temperature-related parameters, minimum tempera-
ture (T min) is thought to be the more sensitive to atmospheric
induced climate change than other temperature variables
(Easterling et al., 1997; Tang and Arnone, 2013).

In this paper we analyze trends in monthly average minimum
temperatures (T min) for 10 rural locations in the northern Great
Basin/sagebrush steppe of the U.S. Time series such as these exhibit
autocorrelation: monthly temperatures are correlated with
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adjacent months. Many standard statistical analyses carry an
assumption that observations are independent. Autocorrelation
within the series limits the usefulness of traditional regression
analysis, in part because the assumption of independence of errors
is violated. Thus, as appealing as regression analysis may appear, it
was necessary to explore other analysis approaches. Auto-
regressive, integrated, moving average (ARIMA) models have
been used to analyze time series data (Visser and Molenaar, 1995;
SAS Institute, 2008; Karner, 2009). State space modeling (SSM),
another technique with general application to time series data, has
grown out of the field of control engineering. Kalman (1960)
described the approach, and the filtering technique he proposed
is now known as the Kalman filter. Harvey (1989) presented a class
of models referred to as structural models, which utilized SSM and
the Kalman filter in macroeconomics. Harvey and Todd (1983) had
previously discussed the relative merits of ARIMA and SSM
methods and concluded that while both methods provided similar
forecast functions, structural models were desirable because the
individual components (such as cycle, season and trend) have
direct interpretation, and the model’s well-defined structure leads
to appropriate forecast functions. For our purposes, we chose
structural modeling because it allows separation of the model into
individual components. Harvey and Souza (1987) utilized SSM
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Fig. 1. Map of the USA showing location of the Great Basin (inset), and elevation map of Oregon and Nevada showing weather station locations as described in Table 1.

techniques to investigate the presence of cyclical precipitation
patterns in Brazil. Others have investigated the North Atlantic
Oscillation (Mills, 2004), central England temperature record
(Harvey and Mills, 2003); and global warming signals (Stern and
Kaufmann, 2000).

Prior analyses have shown increasing temperature trends both
globally (Folland et al., 2001) and regionally (dos Santos et al. 2011;
Mote et al., 2013). Thus our hypothesis was that the majority of
locations will exhibit statistically significant warming during the
period of record. Our second hypothesis was that warming would
not be uniform over time. In other words, even if there was a sig-
nificant overall warming trend, individual decades might show no
warming, or even cooling. To test these hypotheses, we applied
time series analysis to monthly T min data from the 10 locations.
We discuss the relevance of our analysis to sagebrush steppe
ecology.

2. Methods
2.1. Temperature data

Daily minimum surface air temperature data were obtained for
10 National Weather Service (NWS) cooperator stations in Nevada
and Oregon, USA. The monthly data we present in this paper are the
averages of all daily T min values within a month. Stations were
located between 39 and 44°N and 114—122°W. Nine stations were
within the boundary of the Great Basin (Fig. 1). We selected 10
stations that had generally continuous data records between 1940
and 2010, with two beginning before 1900 (Table 1). Data for this
study was obtained from the National Climatic Data Center (NCDC),
Global Historical Climatology Network, (GHCN) Version 3 data re-
pository (see: http://www.ncdc.noaa.gov). These data have
received extensive quality assurance testing by NCDC prior to
public release (Durre et al., 2010; Menne et al.,, 2012). These tests

include non-climatic influences such as changes in instrumenta-
tion, station environment, and observing practices that occur over
time (Peterson et al, 1998). Initially, the data were visually
inspected for trends, discontinuities and outliers. Boxplots of T min
were constructed to assist with this and to describe the general
seasonal dynamics of each station (Fig. 2).

2.2. Analysis

We analyzed each station’s record of average minimum monthly
air temperature by using Unobserved Components Model (UCM) as
implemented in the SAS 9.2 release (SAS Institute, 2008).! These
structural models provide a regression-like decomposition of the
response series into unobserved, or latent, components. Seasonal,
cyclical, trend and regression components can be extracted from
the series, leaving the irregular (random error) component. A UCM
can always be viewed as a generalized regression model where the
regression coefficients can be time varying (SAS Institute, 2008).
Modeled components can be deterministic or stochastic, linear or
nonlinear. Harvey (1989) provides a thorough discussion of UCM
development and it’s relation to ARIMA and exponential smoothing
models. An objective of time series analysis is to model the re-
sponses across time so that no structure remains in the residuals.

Here each series was modeled separately, by starting with sto-
chastic seasonal, cyclical and trend components in a basic structural
model (BSM). The following stochastic model can capture this type
of series in UCM:

Vi= f + v, + e, ethID(O, af), t=1,..,n (1)

Here y; is the temperature time series, . is a stochastic trend, vy;

1 Mention of tradename does not indicate endorsement by USDA.
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Table 1

Station metadata for the ten NOAA cooperative weather stations used in this report. Data were obtained from the Global Historical Climate Network (GHCN). Station numbers
refer to location numbers on the map in Fig. 1, and GHCN ID references the GHCN database ID for that station. Percent complete data are for the monthly data summaries

provided in the GHCN-Monthly dataset.

Station # GHCN ID GHCN principle name Elev. meters Coordinates Start year End year % Missing
North West
1 UsSwo00094185 BURNS MUNICIPAL AIRPORT 1262 43.60 118.96 1939 2010 1
2 USC00354670 LAKEVIEW 2 NNW 1314 4224 120.37 1914 2008 4
3 USC00355162 MALHEUR REFUGE HDQ 1254 43.27 118.84 1937 2010 5
4 USC00356883 PRINEVILLE 867 44.30 120.81 1897 2010 6
5 USC00358029 SQUAW BUTTE-NORTHERN GREAT BASIN EXP RANGE? 1427 43.49 119.72 1937 2010 3
6 USC00260507 AUSTIN #2 2012 39.49 117.07 1939 2008 6
7 Uswo00024121 ELKO REGIONAL AIRPORT 1539 40.83 115.79 1911 2010 2
8 USC00262780 FALLON EXPERIMENT STATION 1210 39.46 118.78 1938 2010 3
9 USC00263340 GREAT BASIN NATIONAL PARK® 2083 39.01 114.22 1937 2010 4
10 USwW00024128 WINNEMUCCA AIRPORT 1310 40.90 117.81 1885 2010 0
@ Referred to as NGBER in text.
b Referred to as GBNP in text.
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Fig. 2. a, b. Mean monthly minimum surface air temperature (°C) for 10 locations in Nevada (a) and Oregon (b), for period of record. Boxes span the 25th and 75th interquartile
range and the horizontal line identifies the median temperature. Upper and lower whiskers show the range of data between the 10 and 90 percentiles. Extreme values beyond these

percentiles are dots above or below the whiskers.

represents a stochastic seasonal component, and the irregular, or
error, term is e with a normal, independent distribution (NID) of
mean zero and variance o2 . Trend y is the tendency of the series in
the absence of seasonality y¢. The UCM procedure provides two
alternative models for the trend component. First is as a random
walk (RW) which implies that the series has no persistent upward
or downward tendency. The RW model for trend u; becomes:

Me = HMe1 + 05 Me~ NID(O7 ”3;) (2)

where (1 has no net movement up or down and in the case of 0,2] =
0, p; becomes constant. In the second case trend is modeled as

local linear trend (LLT). Here trend has independently varying level
ue and slope Bt. These terms are analogous to intercept and slope
terms in ordinary linear regression, but with time-varying co-
efficients. This model can be represented as:

we =t 1 +Be1+m . me~NID(0, o?) (3)
where 8 = 1+ &, & ~NID(O, o%)

As noted, the disturbance terms 7, and &; are assumed inde-
pendent and each can be zero, which, when 0? = 0 creates a linear
trend with deterministic slope. If 0,27 =0 the trend becomes
smoother but still varies based on the slope disturbance term (o?).
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The BSM was modified by removing non-significant compo-
nents. Significance tests (p |t|<0.10) determined whether compo-
nents were stochastic or deterministic. After models were revised
based on these results, each component was tested to determine
whether it contributed significantly to the model. We used UCM to
examine the trend component for each series and properly account
for serial correlation common to temperature time series. At all
locations the cyclical component was not significant and was
dropped. After each model was developed, white noise tests of
residuals were performed to verify that remaining variation was
random error.

Temperature data for Burns, Oregon will be considered in detail
to illustrate the use of UCM in SAS. The data are 99% complete, with
only short gaps in the monthly sequence. The station was moved
8 km east, from the Post Office to the Burns Airport in May 1980.
The data were prepared for analysis and then analyzed in UCM
beginning with Eq. (1) modeling trend as a LLT Eq. (3). The station
move required that an intervention term be added to the model:

Ye= e+ v+ Z}ilﬁjxjt + & (4)

The station move in 1980 was coded as a dummy variable xj,
having two levels (0, 1). The dummy variable allows for removal of
the effect of the station move from the model. This model (4) fit the
data well (adj. R> = 0.88), however inspection of the residual
autocorrelation function (ACF) showed significant lag 1 correlation.
Therefore the model (4) was modified to include a lag (1) term on
the dependent variable y;. All stations in this report required the lag
term.

m
Vo= Het Vet Do oeit B+ e (5)
j=1

Addition of the lag term to account for serial correlation
improved the R? slightly (0.9) and examination of the residual ACF
indicated the time series had been stabilized; that is, there is no
remaining structure in the residuals. In its final form the model (5)
fit the data well. The likelihood optimization algorithm in UCM
converged after 8 iterations and indicated that trend components
(level and slope) were not stochastic (Pr>|t| = 0.8 and 0.81,
respectively). Therefore these components were treated as con-
stants by constraining a% and o? in (3) to zero, yielding a constant
trend similar to ordinary regression. Seasonality remained as a
stochastic component although its variance term was not highly
significant (Pr>|t] = 0.1). Our objective in this paper is to determine
trend components of each series. We do not discuss the modeling of
seasonal and irregular terms here. For details of the UCM procedure
the reader can consult the ETS User’s Guide, Chapter 31 (SAS
Institute, 2010). Each of the remaining 9 station temperature se-
ries were analyzed similarly.

2.3. Descriptions of terms

2.3.1. Stochastic vs. deterministic

Deterministic model output is an exact result of parameter
values and the initial conditions. Temperature on day two can be
fully described by temperature on day one and the model param-
eters. Stochastic (probabilistic) model output on day two is not fully
determined. The parameters vary with time and therefore the same
initial conditions can have multiple outputs based on the variance
associated with the model parameters. Ecologists are quite familiar
with the randomness inherent in natural systems. This leads to an
effort to develop probabilistic (stochastic) models to describe the
system under study. If the variances associated with the parameters
approach zero the model then reduces to a deterministic statistical

representation of the phenomenon being studied.

2.3.2. Level and slope

Trend is modeled using two components. Level and slope
together describe the trend of the system. At each time step the
temperature is estimated as the sum of level and slope estimates.
Level is based on previous temperatures, and slope represents the
expected change in temperature at each time interval. Both level
and slope have a variance term which creates a range of possible
temperature estimates.

3. Results

The ten locations included in this analysis cover a wide cross-
section of the Great Basin (Fig. 1). Elevations were generally in
the 1200—1550 m range with Prineville below (867 m), and Austin
(2012 m) and GBNP (2083 m) above that range (Table 1). We
calculated long term minimum and average temperatures to pro-
vide an indication of the relative temperatures across locations
(Table 2). The three most southerly locations did have the highest
average T min over the period of the record. Winnemucca and Elko
were both colder than some Oregon locations, with Elko registering
as the coldest of the 10 locations (at least for T min). Six of the lo-
cations fell within a 1.0 °C range (0.6 to —0.4 °C) for T min. The
relative rankings were different for average than for minimum
temperature. The location with the largest shift in ranking was
Winnemucca, which was fourth coldest for minimum, but second
warmest for average temperature. Again the three most southerly
locations tended to be warmer than locations to the north. The two
highest elevation locations were also the most southerly (GBNP and
Austin) and the lowest elevation location (Prineville) was the most
northerly. So there was complete confounding of latitude and
elevation.

All locations were fitted using a lag of one to account for serial
correlation in the temperature series. Coefficients (¢;) ranged from
0.008 to 0.279. Prineville required an additional lag of 6 months to
minimize the ACF. Two locations, Burns and Prineville were moved
during the period studied here, and in both cases significant (Pr>|t|
<0.05) change was noted (—1.2 °C and 1.6 °C, respectively) after the
station was moved.

Two locations, Burns and Malheur, had deterministic level and
slope (Table 3). In other words, these two locations showed no
trends over the period of record (Fig. 4). The remaining locations
were found to have stochastic level terms, but in all cases slope was
deterministic. Austin had the highest level estimate (2.2 °C) while
Elko had the lowest (—0.237 °C). The slope term (Table 3) was
negative for Burns, NGBER, Fallon, Great Basin NP, and

Table 2
Annual average of daily minimum and average temperature (°C), averaged across all
years in the period of record for each location in the study.

Location Station period of record

Minimum SE Average SE
Austin 1.2 0.2 8.5 0.2
Elko -1.0 0.2 79 0.1
Fallon 1.6 0.1 10.7 0.1
GBNP 1.9 0.1 8.9 0.1
Winnemucca 0.1 0.1 9.4 0.1
Burns -0.3 0.1 7.5 0.1
Lakeview 0.6 0.2 7.9 0.2
Malheur 0.2 0.1 8.2 0.1
NGBER 0.2 03 73 0.3
Prineville -04 0.1 84 0.1
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Winnemucca, however all slope estimates were within 1 S.E of zero.
None of the locations showed a large trend (Fig. 3). All locations
with stochastic level components show evidence of multi-year
deviations as the time series developed.

We evaluated variability, patterns, and trends in the T min data.
Monthly variability was assessed with box plot diagrams (Fig. 2).
The consistent pattern across locations was that year-to-year
variation in T min was highest in the winter months (December,
January and February). For many locations, spring was not as var-
iable as we might have thought, especially April and May. In gen-
eral, there was relatively low variability during the summer
months.

Scatter plots (Fig. 3) represent all the monthly T min values for
the period of record. Consistent scaling was used on figures to
improve across location comparison. Scatter plots allow a visual
assessment of the extreme monthly values that are not evident in
other parts of the data analysis. For example, many, but not all lo-
cations, experienced a very cold January 1949. This was among the
coldest months on record for all sites except Winnemucca and
Malheur. In several cases January 1949 was a clear outlier
(approaching —20 °C), well below other cold months in the period
of record (e.g. GBNP, Fallon, and Burns). Several locations had colder
than normal temperatures during the 1980’s than in surrounding
decades. Prineville, Fallon and Austin all had slightly warmer
summer months since 2000 than during the decades immediately
preceding 2000, as indicated by higher levels in the upper portion
of the graph.

The black line in the scatter plots represents trend, but scaling
on these plots makes it difficult to visualize the magnitude of trend.
To improve visual assessment of the trend line, we re-plotted the
data and scaled the graphs from +3 to —3 °C in Fig. 4. Two of the
locations (Burns and Malheur) were deterministic and showed no
significant trend over the period of record. These locations were
only 50 km apart, and the Malheur site is in close proximity to
Malheur and Harney Lakes which are relatively large (about
30,000 ha of area) internally drained Great Basin lakes. The other
locations demonstrated some degree of trend over the period of
record, in both directions. The exception was Austin which showed
only small tendencies for trend, and only upward trend. The decade
of the 1940’s was cool at many locations, with all non-deterministic
sites except Austin exhibiting some degree of downward trend.
From the 1950’s onward, trends were generally flat or increasing
with several exceptions. For many locations, the 1980’s experienced
a cooling trend; in the case of Elko, cooling during the decade was
nearly 2 °C. Smaller declines were seen in Fallon, NGBER, and Pri-
neville. Half of the locations (Elko, Fallon, GBNP, Lakeview and

Table 3

NGBER) had T min declines during the late 1990’s to 2010.

The slopes generated from location data was used to calculate a
100 yr change (Table 3). Several locations showed increases (Elko,
Austin, Lakeview, and Prineville) and several decreased more than a
fraction of a degree (Winnemucca, GBNP, and NGBER). However,
when a confidence interval was calculated for the slopes or 100 yr
estimate, the interval included 0.0 for all locations.

4. Discussion

The U.S. Great Basin has experienced dramatic climate shifts in
the past (e.g. Nowak et al., 1994). We chose to evaluate one aspect of
climate during the relatively short period for which weather re-
cords are available. The parameter we present here is T min, in part
because it is thought to be more sensitive to atmospheric induced
climate change than other temperature variables (Easterling et al.,
1997; Tang and Arnone, 2013), and is important to the adaptive
genetic variation of native species (Richardson et al., 2014). Tem-
perature in general is of great interest because it influences rates of
biological processes and interacts so strongly with precipitation
(Schimel, 2013). Our analysis provides a mixed picture of monthly
T min trends during the past century (datasets range from 69 to 125
years for the 10 sites). The changes calculated for a 100 yr interval
tend to increase for some locations such as Elko and Prineville, and
cool slightly for others, such as Winnemucca and NGBER. But for all
locations, the absolute value of the slope standard error is greater
than the value of the slope. A confidence interval around the slope
would include zero. So even for sites with apparent trends, there
was no statistical significance associated with the trend. Other
T min analysis of the Great Basin has shown temperature increases
(dos Santos et al. 2011; Tang and Arnone, 2013). Both these studies
found that T min trends of individual sites could be positive, neutral
or negative. In their analysis there were more sites with positive
T min trends, so on a regional basis (Tang and Arnone, 2013) or a
state basis (dos Santos et al. 2011), these authors concluded there
has been warming in the past century. The synthesis of these results
shows that temperature trends are not uniform across space. We
did not analyze monthly trends, although we do discuss variability
during different months and seasons.

While larger global and regional trends are certainly of interest,
we focused more on evaluation of trends within and across sites.
There have been major changes in vegetation patterns in the Great
Basin during the past century, but it is unclear if these changes are
related to climatic oscillations, directional changes in climate, hu-
man impacts, or other factors such as rising atmospheric CO,. Our
analysis of the ten locations yielded the following general

Trend information, based on the model final state, for 10 locations in Oregon and Nevada. Monthly mean minimum temperature (°C) records were decomposed into season,
trend and irregular components by structural time series modeling. Level and slope together represent the trend component. Change in minimum temperature per 100 y is

estimated from the slope component.

Station State Level Slope °C per 100 y S.E.
Estimate Std. Err. Estimate Std. Err.

Austin NV 2175 0.312 —-0.00102° 0.00215 1.224 2.58

Elko NV —-0.237 0.441 0.00142° 0.00257 1.704 3.084
Fallon NV 1.39 0.395 —0.00003° 0.00308 —0.036 3.696
GBNP NV 1.483 0.475 —0.0003 0.00447 —-0.408 5.364
Winnemucca NV 0.253 0.303 —0.0008" 0.00114 —1.008 1.368
Burns OR 0.187° 0.334 —0.0002 0.00053 —-0.012 0.624
Lakeview OR 0.534 0.366 0.00098° 0.00213 1.176 2.556
Malheur OR 0.212° 0.137 0.0001°* 0.00068 0.12 0.816
NGBER OR 0.377 0.435 —0.0005" 0.00349 -0.528 4.188
Prineville OR 0.859 0.684 0.00133¢ 0.00183 1.596 2.196

2 Level or slope estimate for this location was deterministic (Pr> |t| = 0.1).
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conclusions: 1) T min variation over years is much higher during
winter months (especially December and January) than during
other seasons, 2) there is evidence of decadal trends in both di-
rections (hotter and cooler) for most sites, and 3) sites tended to
follow individualistic patterns rather than general regional pat-
terns. Vegetation trends in the Great Basin include an increase in
invasive annual grasses such as cheatgrass (Bromus tectorum L.),
and expansion of woodlands. In an analysis conducted over a
decade ago, cheatgrass dominated about 20,000 km? or 7% of the
land area of the Great Basin (Bradley and Mustard, 2005). Several
invasive Bromus species are thought to benefit from increasing
temperatures in this region (Bradley et al., 2016). Mild tempera-
tures are also thought to benefit some species involved in woodland
expansion (Miller et al., 2005). Our analysis may not detect subtle
changes in temperature within individual months, but at a year-
long scale it is difficult to show that past warming could account
for the dramatic increases in invasive annuals during the 1900s. We
did not evaluate precipitation patterns, which can also influence
expansion of invasive annual grasses (Bradley, 2009). Cheatgrass in
particular may also benefit from increasing atmospheric CO, (Ziska
et al., 2005), as do woodland species (Knapp et al., 2001). If tem-
perature change did not have a major impact on cheatgrass
expansion, then increasing atmospheric CO, may be an important
factor. Our personal observations suggest that cheatgrass has
become much more common at higher elevations and minimally
disturbed sites than it was 20 years ago (Chen et al,, 2012). The
reduction in very cold months in the period after 1980 may have
improved survival and recruitment of woodland species such as
western juniper (Juniperous occidentalis var. occidentalis Hook). This
species may be sensitive to very low temperatures or sudden
changes in temperature (e.g. Soule and Knapp, 2007).

The level of variation within months over the period of record
was unexpected. Spring is often viewed as the most variable time of
year, and that may be true on a day-to-day basis. But over years,
winter is clearly most variable in terms of mean monthly T min
(Fig. 2). The nature of that variability can be seen in Fig. 3, with the
rough boundary on the cold edge of the monthly data (generally in
the —10 to —20°C range) and a much smoother upper edge (around
10°C) which represents the warmer months. In terms of trend, Shen
et al. (2012) found that over the contiguous U.S. from 1895 to 2008,
February had the largest positive temperature trend for any month.
Similarly, Vogelsang and Franses (2005) found temperature in-
creases in winter, but not in spring or summer for northwestern
Europe. The effect of extreme cold periods on vegetation is difficult
to predict and may depend on an array of factors including snow
cover, soil moisture, plant phenology and timing of stress relative to
plant developmental stage (Gornish et al., 2015). For seeds and
seedlings of several dominant sagebrush steppe bunchgrasses, high
winter mortality is common, so we anticipate that extreme cold
periods would negatively impact recruitment (James et al., 2011;
Boyd and Lemos, 2013). There appear to be more very cold
months (<—10°C) for many sites during 1940—1960 than in sub-
sequent 20 yr intervals.

Climatic variability can be analyzed for both short term and long
term trends. While much recent focus has been on longer term
trends, multi-year or even multi-decade trends may be critical for
understanding climate/vegetation relationships. Climatic oscilla-
tions in the data we analyzed are most obvious from the smoothed
trendlines in Fig. 4. Some sites showed clear decadal trends; for
example, Elko cooled about 2 °C during the 1980’s, GBNP cooled
from 1940 to 1950 and then warmed an equal amount from 1950 to
1960. Three of the locations (Burns, Malheur and Austin) exhibited
no trend line shifts over decade or shorter time frames. The region
experienced general cooling in the 1980’s and for many locations

cooling from 2000 to 2010, which could influence vegetation
trends. We have not analyzed precipitation data, but cooler tem-
peratures are generally associated with lower evapotranspiration
and thus higher soil moisture. An analysis of climate in the north-
western U.S. from 1675 to 1978 also demonstrated a tendency for
decadal and interdecadal-scale climatic oscillations (Hessburg
et al, 2005). In their summary of recent climatological studies
from the western U.S., Hessburg et al. (2005) found substantial
evidence for a dry or warm period in the 1920’s to 1940’s, but little
agreement among studies for other periods of the timeline. They
compared eight studies which evaluated varying periods between
the years 1600 and 2000 and used a variety of analytical methods.
In our analysis of T min there are a few general trends that are
common to a portion of the sites, (warming in the 1920’s to 1940’s
and cooling in the 1980’s and 2000 to 2010), but clearly site-to-site
comparisons are influenced by factors other than regional climatic
patterns.

The combination of yearly fluctuations during winter (Fig. 2a, b)
and decadal trends (Fig. 4a, b) in T min suggests that recruitment of
existing species and success of restoration projects may be episodic.
Neilson (1986, 1987) suggests that the influence of oscillations
between different climatic regimes can control both establishment
and mortality of individual species. Recruitment of individuals is a
critical parameter for establishing vegetation trajectories or main-
taining stable plant communities. Sequences of favorable estab-
lishment years may be particularly important for western U.S.
sagebrush steppe rangelands because: 1) the region’s aridity cre-
ates challenges for seedling establishment (e.g. James et al., 2011),
and 2) the native perennial bunchgrasses which are important for
stabilizing the sagebrush steppe may be relatively short-lived with
average life spans of a decade or less (Svejcar et al., 2014).

An interesting aspect of our analysis is the overall lack of
consistent trends across sites (Fig. 4). We previously mentioned
some of the regional trends that were evident across a portion of
the sites (eg., the cooling trend in the 1940’s), but there are only a
few sites that exhibited parallel trends. Burns and Malheur were
both deterministic in nature (did not exhibit random trends). But
these sites were only 50 km apart and both were influenced by flat
topography and the buffering capacity of flowing or standing water.
Burns is surrounded by the flood meadows of the Harney Basin
which are generally wet during spring and early summer, and
Malheur is influenced by Malheur and Harney Lakes to its north.
We don't intend to characterize each site, but only point out that
the two most similar sites were physically close and at least to some
extent influenced by similar factors. In contrast, NGBER was only
64 km from Burns, but exhibited a much different pattern. This site
was not influenced by proximity to water. There were periods
where other sites showed parallel characteristics; for example, Elko
and Fallon from 1975 to present. In their analysis of Pacific coast
climate (from Oregon to Alaska), Gedalof and Smith (2001) found a
“step-like climate shift” in 1976—1977. This roughly corresponds to
T min declines in Elko, Fallen and NGBER.

In general, we could not find reasonable ways to group sites,
based on geography (Fig. 1), elevation (Table 1), or relative ranking
based on T min or T ave (Table 2). There was confounding of
elevation and latitude in that our southernmost site was at the
highest elevation (GBNP) and our northernmost site was at the
lowest elevation (Prineville). The critical message would appear to
be that caution must be exercised in extrapolating yearly weather
data from one site to another. Precipitation is more variable than
temperature in space and time (e.g. Donat et al., 2014), and it is
more difficult to predict (Webb and Stokes, 2012), but that does not
necessarily mean that temperature is easily estimated across space.
Our analysis demonstrates the uniqueness of T min within sites.
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Others have also shown that century or longer, site-level temper-
ature trends can be either positive or negative at the scale of a state
(dos Santos et al. 2011), the Great Basin (Tang and Arnone, 2013),
western North America (Booth et al., 2012), or globally (Wickham
et al,, 2013).

5. Conclusions

Analyses of past and present climatic trends provide ecologists
and land managers a starting point for adapting to future climate.
Climate is a major driver of vegetation dynamics, but separating
climatic and management impacts on vegetation can be very
difficult. Our analysis of ten locations in the U.S. Great Basin yielded
the following major conclusions related to trends in T min: 1)
variation in T min is much greater during the winter than in other
seasons, 2) most, but not all sites, experience multi-year or multi-
decade trends in either direction (colder or hotter), and 3) the
sites had individualistic patterns of T min rather than following
general regional patterns. We suggest ecologists and managers in
this region access past climate data for sites important to them
from the Global Historical Climatology Network (http://www.ncdc.
noaa.gov), via the Regional Climate Centers. There is a tremendous
amount of available data for a wide variety of locations (http://
www.wrcc.dri.edu, click “Historical Data”, “Climate Summaries”,
then “Western U.S. Climate Summaries — NOAA Coop Stations” for
data in the western U.S.). The large number of cooperating sites
ensures that climate data need not be generalized across large areas
at least in the U.S. While the density of weather stations may be
highest in North America and Europe, there is a substantial global
network of weather stations. For example, Wickham et al. (2013)
compiled data sets from 36,869 sites globally for their analysis.
Evaluating past trends for an area is a reasonable first step in
planning for the future. A great deal of work is needed to link past
climate to changes in plant and animal populations. Even during
periods of relatively stable climate, the western U.S. sagebrush
steppe is subject to large yearly variation, which complicates trend
analysis.
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